模型的權重與偏差值

神經元的權重與偏差

在神經網絡中,權重 (weight) 和偏差 (bias) 是模型的兩個重要參數。

權重 (weight) 指的是神經網絡中的輸入層和輸出層之間的連接強度。每個神經元都有一個權重矩陣,表示與該神經元相連的輸入張量的強度。輸入張量與輸出張量之間的權重越大,該神經元對輸出的貢獻就越大。

偏差 (bias) 指的是神經網絡中的偏移量。每個神經元都有一個偏差值,表示該神經元的輸出在不考慮輸入的情況下的預設值。偏差值可以控制神經網絡的輸出範圍,並且可以用於控制模型的準確性。

在訓練神經網絡模型時,通常會使用梯度下降法來調整權重和偏差的值,以使得模型的輸出與真實值的差異最小。

設定神經元的偏差值

在訓練神經網絡模型時,通常可以自己設定神經元的偏差值。

例如,在 TensorFlow 中可以使用以下方式創建一個帶有偏差的神經元:

上面使用了 bias_initializer 參數指定了偏差的初始值為 1.0。

使用梯度下降法調整偏差值

在訓練神經網絡模型時,通常會使用梯度下降法來調整偏差的值,以使得模型的輸出與真實值的差異最小。通常會使用 TensorFlow 的自動微分機制來計算模型的梯度,並使用梯度下降法調整偏差的值。

簡單範例

最後我們檢查了神經元的偏差值,可以看到它已經從 1.0 調整到了 0.9。

手動設定神經元的偏差值

以下為一個簡單範例

發佈留言

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *