我的新書AI 職場超神助手:ChatGPT 與生成式 AI 一鍵搞定工作難題的教材投影片已製作完成
歡迎各位有需要的教師和博碩文化索取教材

如何縮小Tensorflow運算模型時使用的記憶體大小

使用剪枝法

剪枝是一種常用的方法,用於縮小深度學習模型的大小。在剪枝過程中,可以刪除模型中不重要的權重,以縮小模型的大小。

以下是使用 TensorFlow 2.x 的簡單範例,說明如何在深度學習模型中進行剪枝:

import tensorflow as tf

# 建立模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(128, input_shape=(32,), activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# 加載權重
model.load_weights('model_weights.h5')

# 將權重轉換為不為零的權重的比例
model.summary()

# 進行剪枝
pruning_schedule = tf.keras.mixed_precision.experimental.PruningSchedule(initial_sparsity=0.50, final_sparsity=0.90, frequency=100)
model_for_pruning = tf.keras.mixed_precision.experimental.prune_low_magnitude(model, pruning_schedule)

# 繼續訓練模型
model_for_pruning.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model_for_pruning.fit(train_data, train_labels, epochs=5)

# 保存剪枝後的模型
model_for_pruning.save('pruned_model.h5')

訓練過程中使用正則化

正則化是一種常用的方法,用於防止過擬合,並縮小模型的大小。在 TensorFlow 中,您可以使用 tf.keras.regularizers 中的正則化函數,如 tf.keras.regularizers.l1tf.keras.regularizers.l2,在網絡層中使用正則化。

model = tf.keras.Sequential([
    tf.keras.layers.Dense(128, kernel_regularizer=tf.keras.regularizers.l2(0.01), input_shape=(32,), activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

使用較小的資料集進行訓練

如果資料集較大,則模型也會較大。因此,可以使用較小的資料集來訓練模型,以縮小模型的大小。
使用較少的運算計算。您可以使用較少的運算計算來縮小模型的大小。
例如,可以使用 1×1 卷積層來替代全卷積層預設值的3×3,或使用矩陣乘法來代替多重迴圈。

以下是使用 TensorFlow 2.x 的簡單範例,說明如何使用 1×1 卷積層來替代全卷積層的預設3×3的設定:

import tensorflow as tf

# 建立模型
model = tf.keras.Sequential([
    # 使用 1x1 卷積層替代全卷積層
    tf.keras.layers.Conv2D(64, (1, 1), padding='same', input_shape=(32, 32, 3), activation='relu'),
    tf.keras.layers.Conv2D(64, (3, 3), padding='same', activation='relu'),
    tf.keras.layers.Conv2D(64, (1, 1), padding='same', activation='relu'),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(10, activation='softmax')
])

# 編譯和訓練模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(train_data, train_labels, epochs=5)

在這個範例中,我們在網絡中使用了三個卷積層,其中第一個和第三個使用 1×1 卷積核。這有助於縮小模型的大小,同時保留了運算計算的效率。
如果將 kernel_size 設為 (3, 3),則 TensorFlow 會將卷積核的高度設為 3,寬度設為 3。
因此將kernel_size 設定為3或是 (3, 3),卷積核的大小都是 3×3,沒有任何意義上的差別。

修改kernel size

在使用 CNN 時,通常會將較大的 kernel size 放在較早的卷積層,較小的 kernel size 放在較深的卷積層。這樣做的目的是要讓模型能夠先捕捉到較大的特徵,再細究較小的特徵。

當然,也不一定要固守這個規則,如果您有其他的設計想法,也可以嘗試使用。但是,請記住,選擇 kernel size 的過程是一個平衡的過程,需要考慮訓練資料的特性、模型的性能和大小等因素。您可以透過多次嘗試和調整,找到對您的模型最合適的 kernel size。

使用預訓練的模型

使用預訓練的模型,而不是從頭開始訓練新模型。預訓練的模型已經在大型資料集上訓練過,可以直接套用到您的應用程序中。使用預訓練的模型可以使您的應用程序更小且訓練速度更快。


17年資歷女工程師,專精於動畫、影像辨識以及即時串流程式開發。經常組織活動,邀請優秀的女性分享她們的技術專長,並在眾多場合分享自己的技術知識,也活躍於非營利組織,辦理活動來支持特殊兒及其家庭。期待用技術改變世界。

如果你認同我或想支持我的努力,歡迎請我喝一杯咖啡!讓我更有動力分享知識!