Posted on

使用OpenCV判別圖像清晰度

3種清晰度評價方法

  • Tenengrad梯度方法: Tenengrad梯度方法利用Sobel算子分別計算水平和垂直方向的梯度,同一場景下梯度值越高,圖像越清晰。以下是具體實現,這裡衡量的指標是經過Sobel算子處理後的圖像的平均灰度值,值越大,代表圖像越清晰。
  • Laplacian梯度方法: Laplacian()變換不需要區分圖像的x和y方向計算梯度,從上圖的2種kernel也可以看到其x和y方向是對稱的。
  • 方差方法: 方差是概率論中用來考察一組離散數據和其期望(即數據的均值)之間的離散(偏離)成都的度量方法。方差較大,表示這一組數據之間的偏差就較大,組內的數據有的較大,有的較小,分佈不均衡;方差較小,表示這一組數據之間的偏差較小,組內的數據之間分佈平均,大小相近。

圖像清晰度識別之Laplacian算子

Laplacce算子是一種各向同性算子,二階微分算子,在只關心邊緣的位置而不考慮其周圍的像素灰度差值時比較合適。Laplace算子對孤立像素的響應要比對邊緣或線的響應要更強烈,因此只適用於無噪聲圖像。存在噪聲情況下,使用Laplacian算子檢測邊緣之前需要先進行低通濾波。所以,通常的分割算法都是把Laplacian算子和平滑算子結合起來生成一個新的模板。

從模板形式容易看出,如果在圖像中一個較暗的區域中出現了一個亮點,那麼用拉普拉斯運算就會使這個亮點變得更亮。因為圖像中的邊緣就是那些灰度發生跳變的區域,所以拉普拉斯銳化模板在邊緣檢測中很有用。一般增強技術對於陡峭的邊緣和緩慢變化的邊緣很難確定其邊緣線的位置。但此算子卻可用二次微分正峰和負峰之間的過零點來確定,對孤立點或端點更為敏感,因此特別適用於以突出圖像中的孤立點、孤立線或線端點為目的的場合。

在圖像處理中,圖像的清晰程度可以被表示為圖像的邊緣和顏色變化的強度。圖像的清晰度越強,邊緣和顏色變化的強度就越高。因此,通過評估圖像的清晰度,可以檢測圖像是否模糊。

使用範例和結果

import numpy as np
import cv2
from os import listdir
import re
files = [f for f in listdir('./wrong2/') if re.match(r'.*\.jpg', f)]
for i in range(len(files)):
    image = cv2.imread("./wrong2/"+files[i])
    image = cv2.resize(image, (100, 120))
    image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    # Calculate the Laplacian of the image
    laplacian = cv2.Laplacian(image, cv2.CV_64F)
    score = np.var(laplacian)
    print(files[i], score)
cv2.waitKey(0)

下面這張圖片的分數為1099.5216466388888

而這張為2966.9266674375

所以可以知道,由於拉普拉斯是在求邊緣,而模糊偵測就會是一種比較級的狀況,也就是說,如果一個動態的影片,前一偵的邊緣多,後一偵突然變少,有可能就是因為正在移動而造成的模糊導致邊緣變少