I'm a mother of two precious kids and a professional programmer.
我的新書AI 職場超神助手:ChatGPT 與生成式 AI 一鍵搞定工作難題的教材投影片已製作完成
歡迎各位有需要的教師和博碩文化索取教材
在本機測試和LINE的API串接時,有幾種方法可以幫助你模擬和測試,而不需要將程式部署到有HTTPS的網址。 使用Ngrok Ngrok是一個免費的命令行工具,可以將你本機運行的服務暴露到互聯網上。這樣,你可以在本機測試你的API,同時讓外部服務(如LINE的Webhook)能夠訪問你的本機服務。ngrok的原理就是可以把外界的請求轉發到你本機指定的 Port,也就是由 ngrok 產生一串公開的網址來讓外網存取你本機上的Port。它的優點是快速而且還提供了https的服務讓你使用上更安全,甚至還可以設置密碼保護。 這個服務在開發Line Bot時非常好用,我們在本機開發webhook的後端程式,當然不想要每次都一定得部屬到伺服器上面才可以測試,使用Ngrok可以擁有一個公開的網址,可以讓其他人直接連上該網址上的內容。 安裝Ngrok 可從下面網址下載,下載頁面可選擇平台以及安裝方式https://ngrok.com/download 接著將ngrok.exe放置在你想要放置的硬碟位置即可 直接使用下面的指令會出現錯誤訊息 “authentication failed: Usage of ngrok requires a verified account and authtoken.” 查了一下,這是使用 ngrok…
About the author 這篇文章是由我的實習生Steve Wang所撰寫 More about Steve Wang: https://renickbell.net/students/steve-wang/doku.php?id=start Introduction Here the author performs a comparison of different LLM AI models. The goal is…
什麼是Function calling 官方介紹文檔:https://platform.openai.com/docs/actions/introduction 中文介紹文檔:https://openai.xiniushu.com/docs/plugins/getting-started Function calling是一種技術,允許LLM根據對話內容自主選擇並調用預定義的函數。這些函數可以用來執行各種任務,例如查詢實時數據、執行計算、生成圖像等。函數調用是建立 LLM 驅動的聊天機器人或代理(agents)的重要能力,這些聊天機器人或代理需要檢索 LLM 的上下文或通過將自然語言轉換為 API 調用來與外部工具互動。 功能調用使開發者能夠創建: Function Calling可以做到那些事情 如何實現function calling 假如我們現在想要詢問某個地點的天氣,一般的LLM無法做到這件事情,因為訓練的數據集不會包括現在的即時數據。解決這個問題的方法是將LLM與外部工具結合。利用模型的Function Calling能力來確定要調用的外部函數及其參數,然後讓它返回最終的回應。 假設一位用戶向模型提出以下問題: 台北市今天的天氣如何 要實現function calling,需要在LLM的接口中註冊函數,並將這些函數的描述和使用說明一同發送給模型。模型會根據上下文智能地選擇並調用適當的函數。以下是一個簡單的實現示例: 這個範例會使用一個公共API:Weather.gov,要獲取預報,有兩個步驟: 首先,ChatGPT…
參考問答: https://serverfault.com/questions/1161816/mirrorlist-centos-org-no-longer-resolve 當我們在CentOS8安裝一些新的套件的時候,常常會出現這樣的錯誤 Error: Failed to download metadata for repo ‘extras’: Cannot prepare internal mirrorlist: Curl error (6): Couldn’t resolve host name for http://mirrorlist.centos.org/?release=8-stream&arch=x86_64&repo=extras&infra=stock 這個錯誤的重點在於沒辦法解析mirrorlist.centos.org…
甚麼是Breeze-7B-Instruct-v1_0 huggingface頁面:https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0 線上DEMO: https://huggingface.co/spaces/MediaTek-Research/Demo-MR-Breeze-7B 聯發科的Breeze系列有好幾種不同的模型,在使用的時候要注意其微調順序 首先就是Breeze-7B-Base 是 Breeze-7B 系列的基礎模型。而Breeze-7B-Instruct 源自基礎模型 Breeze-7B-Base,使得最終模型可以直接用於常見任務。 Ollama library上的breeze模型總是使用簡體中文回答 我有嘗試使用Ollama在Library上面尋找別人訓練好的Library,但不太確定為什麼總是回答簡體中文,而無法好好使用繁體中文回應 https://ollama.com/search?q=breeze 我有嘗試過markliou/breeze-7b、ycchen/breeze-7b-instruct-v1_0、jcai/breeze-7b-32k-instruct-v1_0 其中markliou/breeze-7b是回繁體中文沒錯但總是沒在理我問什麼,而剩的都用簡體中文 後來發現是問的問題的關係,以jcai/breeze-7b-instruct-v1_0為例,如果問的問題是台灣專屬的,那麼就會以繁體中文回覆,畢竟原本是以Mistral-7B-v0.1為基礎,如果後面的微調沒有微調到的資料,就仍會有簡體中文的出現,如果詢問台北有哪些地方好玩,則會都使用繁體中文 自己將Hugging Face上的檔案匯入Ollama 所以我嘗試使用下面的Makefile,並將https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v1_0的檔案放置至同資料夾內 然後用 中間有出了一些錯誤 panic: runtime error: index…
參考資料 官方教學:https://github.com/ollama/ollama/blob/main/docs/import.md 網路教學:https://www.youtube.com/watch?v=fnvZJU5Fj3Q 基於已有的模型導入 Safetensors 權重 首先就是建立一個Modelfile.txt 例如假如我是用https://ollama.com/markliou/breeze-7b這個做為基礎模型,然後自己建立的LORA微調檔案在data資料夾底下, 則Modelfile.txt的內容如下: 現在從創建 Modelfile 的目錄運行 ollama create,可以使用-f來指定Modelfile路徑,如果不指定就會在你cmd當前資料夾尋找: 可以使用參數 –quantize來運行不同的量化級別 如果你是下載別人的LoRA,而別人的LoRA用的是.bin檔案,則可以使用transformers庫來做轉換,轉成.safetensors 直接導入GGUF的模型 Ollama的From所導入的模型應為GGUF格式,可以透過像 llama.cpp 這樣的工具來將模型轉換為 ggml 或 gguf 格式。 安裝llama.cpp 接著將下載的 .safetensors 模型放置於適當位置,然後開始轉換…
聯發科的Breeze-7B 模型介紹 HuggingFace網址: https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0 DEMO網址: https://huggingface.co/spaces/MediaTek-Research/Demo-MR-Breeze-7B 聯發科的Breeze-7B模型是一個專為繁體中文和英文雙語環境設計的大型語言模型。由聯發科研究團隊開發的一個開源大型語言模型,基於Mistral-7B進行改進和優化。該模型擁有70億個參數,專門針對繁體中文和英文的語言處理進行了優化。 Breeze-7B主要特點 模型比較 模型名稱 參數量 開發者 授權 功能調用 指令跟隨 Breeze-7B-Instruct-v1_0 7B MediaTek Research Apache 2.0 ❌ ✅ Breeze-7B-FC-v1_0 7B…
什麼是MSE? 媒體源擴展(Media Source Extensions, MSE)是一項由W3C制定的網頁API標準,旨在通過JavaScript動態生成和控制媒體流,從而實現無插件且基於Web的流媒體播放功能。MSE允許開發者將媒體數據源附加到HTMLMediaElement(如<audio>和<video>標籤),並動態地為這些元素構建媒體源 MSE的主要功能 MSE的應用場景 MSE的優勢 如何使用MSE 1. 確認瀏覽器支援度,可以使用以下JavaScript進行檢查: 2. 創建MediaSource對象 創建一個MediaSource對象並將其附加到<video>元素上: 3. 處理sourceopen事件 4. 獲取和附加媒體片段 使用fetch API或其他方法來獲取媒體片段,並將其附加到SourceBuffer中: 5. 處理緩衝更新 MSE的瀏覽器支持度 請見此:https://caniuse.com/mediasource 一直以來有低延遲需求的高分發直播需求都會很困擾iPhone對MSE的不支援 但是好消息!!!…
什麼是WebRTC WebRTC(Web Real-Time Communication)是一種開源技術,允許瀏覽器和移動應用程序進行音頻、視頻和數據的實時通信。它能夠在瀏覽器內直接進行音頻和視頻通話,無需安裝任何插件或額外的軟件,這大大簡化了用戶的操作。支持多種平台,包括Web、Android、iOS、Windows、MacOS和Linux。其非常的低延遲,這對於需要即時反應的應用場景(如視頻會議、在線遊戲等)非常重要。 WebRTC的關鍵技術 參考資料:https://webrtc.github.io/webrtc-org/architecture/ WebRTC 的架構分為兩個主要層次,一層是針對瀏覽器開發者的 WebRTC C++ API,另一層是針對網絡應用開發者的 Web API。 WebRTC 支援的音訊與影像引擎具備多種功能,包括各種音訊編解碼器(如 iSAC、iLBC、Opus)、回音消除(AEC)、降噪(NR)、影像編解碼器(如 VP8)、影像抖動緩衝(Video Jitter Buffer)以及畫面增強等。除此之外,WebRTC 的傳輸與會話層包含 RTP 網路層、STUN/ICE 用於網路連線建立,以及抽象的會話管理層,讓應用開發者可自行選擇協議實作方式。 技術目標與限制 WebRTC…
官網介紹o1-preview 介紹 OpenAI o1-preview:https://openai.com/index/introducing-openai-o1-preview 首次瞭解:探索 GitHub Copilot 中的 OpenAI o1:https://github.blog/news-insights/product-news/openai-o1-in-github-copilot/ 在2024/9/12,OpenAI推出了o1-preview的模型,這個模型的最大特色就是具備有先進推理能力,可解決難題。測試顯示o1-preview在程式碼分析和優化方面效果良好。該模型能思考挑戰並能夠將複雜任務分解為步驟,這可以優化程式碼以解決性能問題,加速開發工作流程。 透過這樣的思考流程,ChatGPT可以完成更複雜的程式撰寫任務,過去,我們仍會需要透過人的思考將任務拆細後一步一步請ChatGPT幫忙完成,再由工程師將任務功能組合起來,而現在o1-preview則自己就能夠具備有將複雜任務拆細的能力。 從下圖可看見,ChatGPT的程式撰寫能力瞬間從11分進步到89分(圖片來源: https://openai.com/index/learning-to-reason-with-llms/) o1-preview 模型的新功能總覽 隨著 o1-preview 模型的推出,這個模型在性能、功能和未來更新方向上展現了許多新亮點。 o1-preview 模型功能實測 先說結論,真的非常的強,不論是產生程式、理解程式、修改程式,都和過去是完全不同等級的狀況!非常的厲害。 這是我今天使用o1-preview 來製作一個HTML的俄羅斯方塊的對話紀錄,可以看到ChatGPT完美的完成任務,真的是沒有BUG的完整的遊戲,而且修改的動作也都非常的完美,真的可以靠指令達到我的許多要求。我覺得這樣的程度的模型是真的會影響到許多工程師的未來性。 對話紀錄在此:https://chatgpt.com/share/66e6bcf1-4254-8005-a573-a250e1b51702…
17年資歷女工程師,專精於動畫、影像辨識以及即時串流程式開發。經常組織活動,邀請優秀的女性分享她們的技術專長,並在眾多場合分享自己的技術知識,也活躍於非營利組織,辦理活動來支持特殊兒及其家庭。期待用技術改變世界。
如果你認同我或想支持我的努力,歡迎請我喝一杯咖啡!讓我更有動力分享知識!