I'm a mother of two precious kids and a professional programmer.
快訊!我的新書今天開始可以在天瓏網路書店預購啦!歡迎大家前往訂購!
>>>> AI 職場超神助手:ChatGPT 與生成式 AI 一鍵搞定工作難題 <<<<
使用 LangSmith 和 Langfuse 增強 Dify 上 LLM 的可觀察性 參考文章:https://dify.ai/blog/dify-integrates-langsmith-langfuse Dify 現在支持使用 LangSmith 和 Langfuse 這兩款工具來詳細追蹤和分析 LLM 應用的數據。這些工具使得選擇合適的模型、創建有效的提示、監控應用性能、持續改進應用以及成本優化變得更加容易。 LangSmith 介紹 官方網站:https://www.langchain.com/langsmith LangSmith 的主要目的是提升 LLM 應用的可觀察性和性能,適合需要深入監控和評估模型表現的開發者。LangSmith 是由…
什麼是ReAct 論文網址:https://arxiv.org/abs/2210.03629 ReAct Prompting 是一種結合了推理(Reasoning)和行動(Acting)的提示策略,旨在提升語言模型的推理能力和任務處理的靈活性。這種方法特別適合於需要多步推理的情境,讓模型不僅能回答問題,還能在每個步驟中進行推理、執行動作並根據回饋來調整答案。 ReAct Prompting 的核心概念 運作流程 ReAct Prompting 的過程可以分為以下幾個步驟: ReAct Prompting 的優勢 應用場景 實際範例 假設問題是:「找出哪位科學家首次提出光速的概念,並描述他的研究貢獻。」 Step 1(推理):模型認為首先需要查詢有關「光速概念的歷史背景」。 Step 2(行動):模型查詢資料庫,得到早期研究光速的科學家名單,包括伽利略、牛頓等。 Step 3(推理):模型分析這些科學家的貢獻,並找到提出光速具體數值的第一位科學家。 Step…
什麼是Node Embeddings 參考資料: https://memgraph.com/blog/introduction-to-node-embedding 圖(graphs)的基本組成,即節點(nodes)和邊(edges),並以社交網絡為例說明了它們在現實世界中的應用。而節點嵌入就是把圖中的每個節點轉換成一個向量,這些向量位於 N 維空間中(例如 2 維、3 維,或更高維度),這樣每個節點在空間中都有一個特定的位置。 將節點嵌入空間後,圖中的結構關係會變得更容易理解。舉例來說,如果把節點嵌入到 2 維空間,圖中的「群體」或「社群」結構會以集群的形式顯現出來,人類可以在 2 維圖像中直觀地看出哪些節點是相似的。對於電腦而言,節點嵌入轉化為數字向量,這樣它們之間的距離和相似性就可以通過向量計算來衡量。例如,我們可以使用「餘弦相似度」來比較兩個節點之間的相似性,這樣的計算比直接在原始圖結構上進行複雜得多的計算(如最短路徑)更簡單。 節點嵌入算法是一種將圖中節點映射到低維空間的技術,生成的低維向量(稱為嵌入)保留了節點在圖中的結構信息和屬性。這些向量可以作為機器學習模型的輸入,用於各種任務,如節點分類、鏈接預測和構建 k – 最近鄰居(kNN)相似性圖。 嵌入向量捕捉了節點的特性,使得即使在圖中沒有直接連接的節點也能進行有效的比較和分析。我們可以用嵌入向量來計算節點之間的距離或相似度,並且根據這些距離來衡量兩個節點的「接近程度」。隨著節點數量的增多(例如 1000 個節點),僅通過圖結構來判斷節點的關係會變得更加困難,但嵌入能在高維空間中有效地表示圖的結構,讓電腦能夠更輕鬆地處理大規模圖資料。 至於要如何定義 node similarity…
RAG Parallel Queries是什麼? RAG(Retrieval Augmented Generation)是一種結合了搜尋和生成能力的人工智慧技術。簡單來說,就是當你向RAG模型提出一個問題時,它會先去搜尋相關的資料,然後再根據這些資料生成一個最符合問題的答案。 而Parallel Queries則是RAG的一種執行方式,它允許模型同時向多個數據源發出查詢請求,並並行處理這些請求的結果。這就像我們同時在多個搜索引擎上搜索一樣,可以大大提高找到相關資訊的效率。 這種模式是基於使用原始查詢來生成多個 “相似” 的子查詢,這些子查詢可以被用來增強查詢的上下文,從而提高原始查詢的信息檢索效果。 系統會針對相似但略有不同的查詢進行多次獨立的檢索,並行處理各個查詢的結果,並將相關資訊聚合展示,方便使用者快速比較和選擇不同來源的答案。 RAG Parallel Queries的優點 RAG Parallel Queries的工作流程 分解的實現方法1 – 每個子查詢的結果視為新的查詢「上下文」 將子查詢和相應的答案,以及原始查詢本身的檢索,作為查詢的“上下文”。這類似於 多查詢檢索,但不同之處在於我們跳過檢索細節,直接在更高的層次上討論 https://teetracker.medium.com/langchain-llama-index-rag-with-multi-query-retrieval-4e7df1a62f83 將原始查詢和每個子查詢的結果視為新的查詢「上下文」,進行更高層次的查詢和生成。這種方法類似於「多查詢檢索」(Multi-Query Retrieval),但跳過了檢索過程中的細節,而是將重點放在更高層次的資訊整合和討論上。以下是詳細解釋:…
什麼是RAPTOR 參考資料:https://www.cnblogs.com/xiaoqi/p/18060281/RAPTOR RAPTOR 是一種基於「樹狀結構」的 RAG 方法。首先,RAPTOR 將所有文本分割成小塊,並將這些塊轉化為向量,然後通過聚類這些向量形成樹狀結構的層級索引(例如,不同層級的主題群組)。在查詢時,模型可以根據這棵樹的結構,有針對性地檢索和生成答案。 RAPTOR 是基於樹狀結構的分層檢索方法,將文本片段轉換成向量並聚類形成樹狀索引。這種方法讓系統可以在樹狀結構中快速定位特定的主題或類別,並支持多層次的檢索。RAPTOR 依賴樹狀結構的索引來進行分層檢索,根據查詢在預先建立的分層索引中找到最佳匹配的層次和分支。這使得它在面對大量資訊的時候,可以快速進行全局性或細節性的檢索。 高度依賴於樹狀索引結構,這使得它能更快地找到分層的資訊,但靈活性相對較低。 這種基於樹的索引方式可以讓檢索更高效,因為系統可以快速定位到與查詢最相關的分支。這也有助於全局性查詢,特別是需要在不同主題中查找關鍵資訊的情境。樹狀結構還提供了一種自然的分層索引方法,能適應不同的查詢深度。 和Graph RAG的差異 RAPTOR 和 Graph RAG 有一些相似之處,因為它們都基於結構化的索引來組織和檢索資料,並試圖在回答查詢時提供更全面和有層次的資訊。不過,它們在具體的結構、處理流程和應用場景上仍有一些關鍵區別: 相似之處 RAPTOR 和 Graph RAG 都依賴預先建立的結構化索引,RAPTOR…
什麼是RIG RIG 是一種「檢索-生成交錯」的方法,強調在查詢的每一輪檢索和生成之間交替進行。例如,模型會先檢索資料來生成部分答案,再基於這個生成的內容進行下一輪檢索。這樣交替進行,逐步補充答案。 RIG 常用於需要多步驟推理的情境,模型可以通過分階段檢索、補充和生成,動態構建出全面的答案。 這種方法有助於模型在多輪次中漸進式地加深對複雜問題的理解,尤其適合多跳問題(multi-hop questions),即那些需要逐步從不同的資訊片段中推理出最終答案的問題。 參考資料:https://medium.com/@sahin.samia/retrieval-interleaved-generation-rig-using-llm-what-is-it-and-how-it-works-aa8be0e27bbc RIG 的特點 RIG 沒有固定的結構,它更像是一種逐步探索的策略,不依賴任何預先分層或社群索引,而是即時根據每輪生成的結果來進行下一輪檢索。這讓 RIG 更加靈活,但在處理大型資料集時可能會相對較慢。其資訊生成過程是動態的,每次生成部分答案後再進行新一輪檢索和生成,因此不依賴於預先準備的摘要,而是根據查詢需要來即時擴充答案。 Retrieval Interleaved Generation (RIG)範例查詢 用戶提出一個多步驟的問題: 「阿基米德是如何影響現代物理學的?」 這個問題相對複雜,因為它不僅涉及阿基米德的生平,還包括他的貢獻如何影響後來的物理學理論,需要多步驟推理來構建答案。 RIG 運作流程 最終答案示例 「阿基米德對現代物理學的影響主要體現在他的浮力原理和杠杆原理。浮力原理為伽利略對於運動的研究提供了基礎,而杠杆理論則是牛頓力學的重要基石。此外,阿基米德的研究還在流體力學方面影響了後來的科學家,進一步推動了流體動力學的發展。」
論文網址: https://arxiv.org/abs/2404.16130 Graph RAG 介紹 一種新的 Graph RAG 方法,透過建立基於圖形的文本索引,提升對全球性問題的回答品質。這種方法能夠有效地處理大規模文本語料庫,並且能夠擴展到用戶問題的普遍性和要索引的源文本數量。 Graph RAG 管道利用 LLM 衍生的文本圖索引進行資料處理。首先,該管道從來源文件中構建出實體知識圖,將文件中的實體與其關聯關係組織成網狀結構。接著,Graph RAG 使用 LLM 在索引建立階段進行群體預摘要,針對每個具有相似性的實體群體生成摘要,以便更快速地調用相關資訊。當查詢進來時,Graph RAG 可以在查詢時間使用這些預摘要來快速生成「全局答案」。這種方法不僅提升了答案的全面性和多樣性,還能有效降低生成回答時的 token 成本。 Graph RAG 系統的工作流程…
讓LLM記憶對話的幾種方式 參考資料: https://www.pinecone.io/learn/series/langchain/langchain-conversational-memory/ 這些模式是以LangChain的實作為範例,實現對話記憶可以使 LLM 能夠進行連貫的對話,這對於像聊天機器人這樣的應用來說非常重要。 對話記憶的不同形式,包括 每種記憶形式都有其獨特的應用場景,例如 ConversationBufferMemory 適合簡短對話,而 ConversationSummaryMemory 適合長對話,因為它通過總結歷史對話來節省令牌使用。此外,網頁還提到了其他類型的對話記憶,如 ConversationKnowledgeGraphMemory 和 ConversationEntityMemory。 雖然需要更多的調整來決定總結什麼以及在緩衝區窗口中保持什麼,但ConversationSummaryBufferMemory確實給了我們很多靈活性,也是我們的記憶類型中唯一一個(到目前為止)允許我們記住遙遠互動和以其原始——以及信息最豐富——的形式存儲最近的互動。 ConversationBufferWindowMemory的token使用比較圖 ConversationSummaryBufferMemory的token使用比較圖 進階的記憶模式 – 實體、圖形記憶 參考資料:https://www.comet.com/site/blog/advanced-memory-in-langchain/ ConversationEntityMemory(實體記憶) 實體記憶能夠幫助 AI…
傳統方式如下 傳統匯出專案模組清單的方式很容易會產生一大堆檔案列表,因為會是從python的env中的site package裡面去讀取所使用的專案列表 而且很容易出現一大堆本地端的資訊如下,尤其當我們有使用.whl檔案來安裝環境時,特別會出現下面這種狀況,會導致難以利用這列表去建立新的環境 這邊推薦一個套件名為pipreqs pipreqs 介紹 pipreqs 是一個非常方便的 Python 工具,主要用於 自動生成 Python 專案的 requirements.txt 檔案。這個檔案列出了專案所依賴的所有第三方套件,以及它們的版本號。 pipreqs 會掃描指定的目錄,分析 Python 檔案中的 import 語句,並根據這些資訊來確定專案所依賴的套件。它會盡可能地精確地找出這些套件的版本號。 基本用法 常用選項 建議…
什麼是Agent 參考資料:https://docs.dify.ai/zh-hans/guides/application-orchestrate/agent 智能助手(Agent Assistant),利用大語言模型的推理能力,能夠自主對複雜的人類任務進行目標規劃、任務拆解、工具調用、過程迭代,並在沒有人工干預的情況下完成任務。 在Dify創建Agent 我們可以在Studio > Agent創建一個具備Agent功能的機器人 在認識Agent之前,要先了解工具是什麼 在工作流的地方,我們可以呼叫外部的API,在那邊,呼叫的動作是我們自己在工作流程中設定如何呼叫,但是如果流程不是固定的,而會隨著使用者的回應而改變,那麼工作流就會不堪用,就要改使用Agent,由大語言模型來幫忙判斷何時該呼叫那些外部API或那些功能 在Dify裡面已經有很多預設的工具,但是很多時候如果不符合需求,我們就會需要設定自己的工具 在Dify自己創建工具 首先就是要寫一個API,關於API的格式,我在我的前一篇文章有分享過 那要如何把這個寫好的API給Dify使用呢?這時候就要大推下面這個網址 https://chatgpt.com/g/g-TYEliDU6A-actionsgpt 基本上我就把我的API的程式碼整個貼給他,叫他幫我產生一個YAML檔案,噹噹噹~就完成啦!連解釋都大致正確喔! 在這邊創建自己的工具,然後回到剛剛在Studio > Agnet創建的機器人,在工具部分增加自己的工具,LLM會根據你在YAML裡面寫的工具說明(英文)和參數說明,自動產生相對應的資料去呼叫函數,非常的聰明!但也因為這樣,工具說明和參數說明一定要認真寫,千萬不要亂寫,會影響到呼叫的成功率
17年資歷女工程師,專精於動畫、影像辨識以及即時串流程式開發。經常組織活動,邀請優秀的女性分享她們的技術專長,並在眾多場合分享自己的技術知識,也活躍於非營利組織,辦理活動來支持特殊兒及其家庭。期待用技術改變世界。
如果你認同我或想支持我的努力,歡迎請我喝一杯咖啡!讓我更有動力分享知識!