我的新書AI 職場超神助手:ChatGPT 與生成式 AI 一鍵搞定工作難題的教材投影片已製作完成
歡迎各位有需要的教師和博碩文化索取教材

OpenCV

  • ,

    如何檢測畫面中可能的正方形

    最簡單-使用findContours OpenCV 中有一個名為 findContours 的函數,可以用來查找圖像中的輪廓。一旦你找到了圖像中的輪廓,你可以使用 approxPolyDP 函數來近似地計算輪廓的形狀。如果你要查找正方形,你可以在這些形狀中尋找具有 4 個頂點的多邊形,這些多邊形應該有相近的邊長和角度。如果你要檢測的正方形不是水平的或垂直的,你可能需要使用角度信息來確定它的方向。 當我們可以取得相黏物件邊緣時 – 分水嶺演算法 分水嶺演算法-偵測相連區域形狀 當形狀邊緣不清楚時-使用霍夫找線 使用霍夫變換檢測直線。因為正方形的四條邊是直線,因此可以通過檢測這四條直線來確定正方形。 具體來說,可以使用 OpenCV 中的 HoughLinesP 函數來檢測直線。該函數會返回一組檢測到的線段,這些線段可以是任意方向和長度的線段,因此我們需要對這些線段進行篩選,只保留長度、方向和相對位置都符合要求的線段。接著,我們可以將這些線段按照一定的規則組合成四條邊,從而確定正方形。 以下是一個示例代碼,演示如何使用霍夫變換檢測正方形: 基於角點的角點檢測 哈里斯角點檢測器簡介 Harris Corner…

  • ,

    使用OpenCV判別圖像清晰度

    3種清晰度評價方法 Tenengrad梯度方法: Tenengrad梯度方法利用Sobel算子分別計算水平和垂直方向的梯度,同一場景下梯度值越高,圖像越清晰。以下是具體實現,這裡衡量的指標是經過Sobel算子處理後的圖像的平均灰度值,值越大,代表圖像越清晰。 Laplacian梯度方法: Laplacian()變換不需要區分圖像的x和y方向計算梯度,從上圖的2種kernel也可以看到其x和y方向是對稱的。 方差方法: 方差是概率論中用來考察一組離散數據和其期望(即數據的均值)之間的離散(偏離)成都的度量方法。方差較大,表示這一組數據之間的偏差就較大,組內的數據有的較大,有的較小,分佈不均衡;方差較小,表示這一組數據之間的偏差較小,組內的數據之間分佈平均,大小相近。 圖像清晰度識別之Laplacian算子 Laplacce算子是一種各向同性算子,二階微分算子,在只關心邊緣的位置而不考慮其周圍的像素灰度差值時比較合適。Laplace算子對孤立像素的響應要比對邊緣或線的響應要更強烈,因此只適用於無噪聲圖像。存在噪聲情況下,使用Laplacian算子檢測邊緣之前需要先進行低通濾波。所以,通常的分割算法都是把Laplacian算子和平滑算子結合起來生成一個新的模板。 從模板形式容易看出,如果在圖像中一個較暗的區域中出現了一個亮點,那麼用拉普拉斯運算就會使這個亮點變得更亮。因為圖像中的邊緣就是那些灰度發生跳變的區域,所以拉普拉斯銳化模板在邊緣檢測中很有用。一般增強技術對於陡峭的邊緣和緩慢變化的邊緣很難確定其邊緣線的位置。但此算子卻可用二次微分正峰和負峰之間的過零點來確定,對孤立點或端點更為敏感,因此特別適用於以突出圖像中的孤立點、孤立線或線端點為目的的場合。 在圖像處理中,圖像的清晰程度可以被表示為圖像的邊緣和顏色變化的強度。圖像的清晰度越強,邊緣和顏色變化的強度就越高。因此,通過評估圖像的清晰度,可以檢測圖像是否模糊。 使用範例和結果 下面這張圖片的分數為1099.5216466388888 而這張為2966.9266674375 所以可以知道,由於拉普拉斯是在求邊緣,而模糊偵測就會是一種比較級的狀況,也就是說,如果一個動態的影片,前一偵的邊緣多,後一偵突然變少,有可能就是因為正在移動而造成的模糊導致邊緣變少

  • ,

    讓OpenCV支持GPU

    OpenCV CUDA https://opencv.org/platforms/cuda/ 現代 GPU 加速器已經變得強大且功能強大,足以執行通用計算 (GPGPU)。這是一個發展非常迅速的領域,引起了開發計算密集型應用程序的科學家、研究人員和工程師的極大興趣。儘管在 GPU 上重新實現算法存在困難,但許多人這樣做是為了檢查它們的速度。為了支持這些努力,許多高級語言和工具已經可用,例如 CUDA、OpenCL、C++ AMP、調試器、分析器等。 計算機視覺的重要組成部分是圖像處理,這是圖形加速器最初設計的領域。其他部分也假定大規模並行計算並且通常自然映射到 GPU 架構。因此,實現所有這些優勢並在圖形處理器上加速 OpenCV 具有挑戰性,但非常有益。 目標 在 GPU 上為開發者提供方便的計算機視覺框架,與當前 CPU 功能保持概念上的一致性。 使用 GPU 實現最佳性能(針對現代架構調整的高效內核、優化的數據流,如異步執行、複製重疊、零複製)…

  • ,

    使用GrabCut抓取前景

    理論 GrabCut 算法由英國劍橋微軟研究院的 Carsten Rother、Vladimir Kolmogorov 和 Andrew Blake 設計。在他們的論文“GrabCut”:使用迭代圖切割的交互式前景提取中。需要一種算法來以最少的用戶交互進行前景提取,結果就是 GrabCut。 從用戶的角度來看它是如何工作的?最初用戶在前景區域周圍繪製一個矩形(前景區域應該完全在矩形內)。然後算法迭代地對其進行分段以獲得最佳結果。完畢。但在某些情況下,分割效果不佳,例如,它可能將一些前景區域標記為背景,反之亦然。在這種情況下,用戶需要進行精細的修飾。只需在有錯誤結果的圖像上畫一些筆劃即可。Strokes 基本上說 *“嘿,這個區域應該是前景,你將它標記為背景,在下一次迭代中更正它”* 或者它的反面是背景。然後在下一次迭代中,你會得到更好的結果。 請參見下圖。第一個球員和足球被包圍在一個藍色矩形中。然後進行一些帶有白色筆觸(表示前景)和黑色筆觸(表示背景)的最終潤色。我們得到了一個不錯的結果。 函數介紹 grabCut() 下面介紹幾個常用的參數: img – 輸入圖像 mask – 這是一個蒙版圖像,我們在其中指定哪些區域是背景、前景或可能的背景/前景等。它由以下標誌完成,cv.GC_BGD、cv.GC_FGD、cv.GC_PR_BGD、cv.GC_PR_FGD,或者簡單地通過0,1,2,3…

  • ,

    用opencv作圖片旋轉

    可以使用 OpenCV 的 cv2.getRotationMatrix2D() 函數來生成旋轉矩陣,然後使用 cv2.warpAffine() 函數將圖像旋轉。 import cv2 import numpy as np # 讀取第一幅圖像 image = cv2.imread(‘image1.jpg’) import cv2 import numpy as np def…

  • ,

    調整圖片的亮度

    可以使用 OpenCV 的 cv2.convertScaleAbs() 函數來增亮圖像。這個函數會將圖像的每個像素值乘上一個指定的比例因子並加上一個常數,以此來調整圖像的亮度。 請注意,這個函數可能會導致圖像中的一些像素值超出 0 到 255 的範圍,因此你可能需要在函數末尾使用new_image = np.where(new_image > 255, 255, new_image)來將這些像素值限制在合法範圍內。 import cv2 import numpy as np # 讀取第一幅圖像 image…

  • ,

    用opencv做圖像融合

    OpenCV 的 cv2.addWeighted() 函數可用來實現圖像增量。 這個函數有三個輸入參數: src1: 第一個輸入圖像,應該是第一幅圖像的數組。 alpha: 一個浮點數,用於決定第一幅圖像在輸出圖像中的權重。 src2: 第二個輸入圖像,應該是第二幅圖像的數組。 此函數返回值為加權的結果,其中第一幅圖像的權重為 alpha,第二幅圖像的權重為 1-alpha。 例如,假設你想要將第一幅圖像的 50% 与第二幅圖像的 50%相加,你可以使用以下代碼: import cv2 # 讀取第一幅圖像 img1 = cv2.imread(‘image1.jpg’)…

  • ,

    圖像處理之圖像金字塔

    理論 通常,我們使用尺寸固定的圖像。但在某些情況下,我們需要使用不同分辨率的(相同)圖像。例如,當我們在圖像中搜索物體時,比如人臉,我們並不確定物體出現在圖像中的大小。在這種情況下,我們需要創建一組具有不同分辨率的圖像,並在所有圖像中搜索對象。這些不同分辨率的圖像被稱為圖像金字塔(如果將它們放在一起,最高分辨率的圖像在底部,最低分辨率的圖像在頂部,它看起來像一個金字塔)。 圖像金字塔有兩種:高斯金字塔和拉普拉斯金字塔 高斯金字塔 高斯金字塔的高層(低層)圖像是通過去除低層(高層)圖像中的連續行和列來實現的。再由下一層的5個像素的高斯權值貢獻構成上一層的每個像素。這樣,一個M×N圖像就變成了M/2×N/2圖像。所以面積減少到原來的四分之一。它被稱為Octave。同樣的模式持續到金字塔的上方(即分辨率下降)。同樣地,在擴展過程中,每一層的面積會增加4倍。我們可以使用cv.pyrDown()和cv.pyrUp()函數找到高斯金字塔。 img = cv.imread(‘messi5.jpg’) lower_reso = cv.pyrDown(higher_reso) 可以使用cv.pyrUp()函數放大圖像 higher_reso2 = cv.pyrUp(lower_reso) 拉普拉斯金字塔 拉普拉斯金字塔是由高斯金字塔形成的。拉普拉斯金字塔圖像就像邊緣圖像。它的大部分元素都是0。它們用於圖像壓縮。拉普拉斯金字塔的層次是由高斯金字塔的這一層次與高斯金字塔上一層次的擴展版之間相減形成的。Laplacian層次的三個層次如下(調整對比度以增強內容): 使用圖像金字塔實現圖像混合 金字塔的一個應用是圖像混合。 例如,在圖像拼接中,你將需要將兩個圖像疊加在一起,但由於圖像之間的不連續性,可能看起來不太好。 在這種情況下,使用金字塔圖像混合可以實現無縫混合,而不會在圖像中留下太多數據。 其中一個經典的例子就是混合兩種水果,橙子和蘋果。 現在看看結果本身來理解我在說什麼: 簡單地說就是這樣做的: 1.…

  • ,

    使用模板匹配查找圖像中的對象

    模板匹配 參考此篇教學: https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching.html 使用範例如下: import cv2 as cv import numpy as np from matplotlib import pyplot as plt img = cv.imread(‘messi5.jpg’,0) img2 = img.copy() template…

  • ,

    使用opencv尋找邊緣

    使用Canny算子 Canny 邊緣檢測是一種從不同的視覺對像中提取有用的結構信息並顯著減少要處理的數據量的技術。它已廣泛應用於各種計算機視覺系統。Canny發現,邊緣檢測在不同視覺系統上的應用需求是比較相似的。因此,可以在各種情況下實施滿足這些要求的邊緣檢測解決方案。邊緣檢測的一般標準包括: 錯誤率低的邊緣檢測,這意味著檢測應該盡可能準確地捕獲圖像中顯示的邊緣 算子檢測到的邊緣點應該準確地定位在邊緣的中心。 圖像中的給定邊緣應僅標記一次,並且在可能的情況下,圖像噪聲不應產生錯誤邊緣。 以下為一個簡單使用範例 import numpy as np import cv2 as cv from matplotlib import pyplot as plt img = cv.imread(‘messi5.jpg’,0) edges…


17年資歷女工程師,專精於動畫、影像辨識以及即時串流程式開發。經常組織活動,邀請優秀的女性分享她們的技術專長,並在眾多場合分享自己的技術知識,也活躍於非營利組織,辦理活動來支持特殊兒及其家庭。期待用技術改變世界。

如果你認同我或想支持我的努力,歡迎請我喝一杯咖啡!讓我更有動力分享知識!