快訊!我的新書今天開始可以在天瓏網路書店預購啦!歡迎大家前往訂購!

 >>>> AI 職場超神助手:ChatGPT 與生成式 AI 一鍵搞定工作難題 <<<<

卷積層(Conv2D)參數設定

卷積層(Conv2D)介紹

以下為官方介紹連結:
https://keras.io/api/layers/convolution_layers/convolution2d/

參數介紹

參數

常用參數

  • filters:指定層中濾波器(也稱為卷積核)的數量。通常,增加濾波器的數量可以提高模型的表現,但也會增加計算複雜度。
  • kernel_size:指定濾波器的大小。濾波器的大小越大,模型可以捕捉到的特徵就越大,但也會增加計算複雜度。
  • strides:指定濾波器在輸入數據集上的步長。步長越大,模型就會捕捉到越少的特徵,但也會減少計算複雜度。
  • padding:指定是否對輸入數據集進行 padding。如果選擇 padding,則會在輸入數據集的周圍填充一圈 0,以便濾波器可以捕捉到輸入數據集的邊界特徵。

在設定這些參數時,需要考慮模型的複雜度和需要的特徵。例如,如果輸入數據集很大,且需要捕捉較大的特徵,那麼可能需要使用較大的濾波器和較大的步長。如果輸入數據集較小,且需要捕捉較多的細節,那麼可能需要使用較小的濾波器和較小的步長。

還可以嘗試使用不同的 padding 方式來控制輸入數據集的大小。例如,如果你使用「same」padding,則輸出數據集的大小將與輸入數據集的大小相同;如果你使用「valid」padding,則輸出數據集的大小將比輸入數據集的大小小。


17年資歷女工程師,專精於動畫、影像辨識以及即時串流程式開發。經常組織活動,邀請優秀的女性分享她們的技術專長,並在眾多場合分享自己的技術知識,也活躍於非營利組織,辦理活動來支持特殊兒及其家庭。期待用技術改變世界。

如果你認同我或想支持我的努力,歡迎請我喝一杯咖啡!讓我更有動力分享知識!