發佈日期:

使用現有模型標記新圖片

Auto Labeling

因為在標記時常會花費很多的時間和力氣,現在市面上有許多auto labeling的工具,例如前一陣子meta有發表一個模型,還引起注目叫做SAM: https://segment-anything.com/

以下為一個簡單的使用範例

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
import matplotlib.pyplot as plt
import cv2
import numpy as np
def show_anns(anns):
    if len(anns) == 0:
        return
    sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
    ax = plt.gca()
    ax.set_autoscale_on(False)
 
    img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
    img[:,:,3] = 0
    for ann in sorted_anns:
        m = ann['segmentation']
        color_mask = np.concatenate([np.random.random(3), [0.35]])
        img[m] = color_mask
    ax.imshow(img)
     
image = cv2.imread('./train/IMG_5208_jpg.rf.d85b8d233845117f0362c17ca2222c21.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
 
device = "cpu"
 
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
 
mask_generator = SamAutomaticMaskGenerator(sam)
masks = mask_generator.generate(image)
print(len(masks))
print(masks[0].keys())
 
plt.figure(figsize=(20,20))
plt.imshow(image)
show_anns(masks)
plt.axis('off')
plt.show()

成果如下:

Roboflow的智慧圈選工具

在Roboflow也有類似的智慧圈選工具,可以自動為我們圈選目標的形狀,使用方式如下

使用現有模型標記YOLO格式label

但是若我們想要使用既有的模型訓練一些新的圖片,在新的圖片,若要標記一些常見的物品,如汽車、人、機車等…。這些東西因為在YOLO這種模型,預設的偵測狀況就很不錯了,有的時候為了要讓標記更快速,可以使用現有模型把預測的結果轉為標記檔案,再匯入Roboflow等標記軟體檢視標記狀況並修正錯誤的標記,會可以使標記工作更輕鬆。

預測結果轉標記程式碼

這邊是預測的result的相關文件: https://docs.ultralytics.com/reference/engine/results/#ultralytics.engine.results.Results.tojson

我真的覺得yolov8做的很用心的點,在於他的說明超級清楚,尤其是在程式碼本身上面,我們可以單單藉由下面程式碼印出詳細返回的物件結構,然後就可以了解該如何取得我們所需的物件資訊

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
from ultralytics import YOLO
 
# Load a model
model = YOLO('yolov8n.pt'# pretrained YOLOv8n model
 
# Run batched inference on a list of images
results = model(['im1.jpg', 'im2.jpg'])  # return a list of Results objects
 
# Process results list
for result in results:
    boxes = result.boxes  # Boxes object for bbox outputs
    masks = result.masks  # Masks object for segmentation masks outputs
    keypoints = result.keypoints  # Keypoints object for pose outputs
    probs = result.probs  # Probs object for classification outputs
    print(masks )

從API我們可以得知,若我們使用的是yolo-seg,則吐回的座標資訊可參考這個返回值

完整預測結果轉標記的程式範例

設定folder_path到images的資料夾,label會放到相對應的labels資料夾下

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from ultralytics import YOLO
from PIL import Image
import cv2
import os
 
# 資料夾路徑
folder_path = './datasets/coco8-seg/images/train'
images = []
# 確保資料夾存在
if not os.path.exists(folder_path):
    print("資料夾不存在")
else:
    # 取得資料夾內所有檔案
    file_list = os.listdir(folder_path)
     
    # 遍歷每個檔案
    for filename in file_list:
        # 確保檔案是圖片檔案(可根據您的需求調整)
        if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
            # 構建完整的檔案路徑
            file_path = os.path.join(folder_path, filename)
             
            images.append(file_path)
 
# Load a model
model = YOLO('yolov8n-seg.pt'# pretrained YOLOv8n model
 
# Run batched inference on a list of images
results = model(images)  # return a list of Results objects
 
 
# Show the results
for r in results:
    formatted_string = ""
    if r is not None and r.masks is not None:
        for i in range(len(r.masks.xyn)):
            mask = r.masks.xyn[i]
            cls = int(r.boxes.cls[i].item())
            formatted_rows = []
            formatted_rows.append(cls)
            for row in mask:
                formatted_rows.append(row[0])
                formatted_rows.append(row[1])
 
            formatted_string = ((formatted_string + '\n') if formatted_string != "" else "") + " ".join(str(x) for x in formatted_rows)
        with open(r.path.replace('.jpg', '.txt').replace('images', 'labels'), "a") as file:
            file.write(formatted_string)

把YOLO格式轉為COCO格式

請參考此專案: https://github.com/Taeyoung96/Yolo-to-COCO-format-converter/tree/master