使用現有模型標記新圖片

Auto Labeling

因為在標記時常會花費很多的時間和力氣,現在市面上有許多auto labeling的工具,例如前一陣子meta有發表一個模型,還引起注目叫做SAM: https://segment-anything.com/

以下為一個簡單的使用範例

from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
import matplotlib.pyplot as plt
import cv2
import numpy as np
def show_anns(anns):
    if len(anns) == 0:
        return
    sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
    ax = plt.gca()
    ax.set_autoscale_on(False)

    img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
    img[:,:,3] = 0
    for ann in sorted_anns:
        m = ann['segmentation']
        color_mask = np.concatenate([np.random.random(3), [0.35]])
        img[m] = color_mask
    ax.imshow(img)
    
image = cv2.imread('./train/IMG_5208_jpg.rf.d85b8d233845117f0362c17ca2222c21.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"

device = "cpu"

sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)

mask_generator = SamAutomaticMaskGenerator(sam)
masks = mask_generator.generate(image)
print(len(masks))
print(masks[0].keys())

plt.figure(figsize=(20,20))
plt.imshow(image)
show_anns(masks)
plt.axis('off')
plt.show() 

成果如下:

Roboflow的智慧圈選工具

在Roboflow也有類似的智慧圈選工具,可以自動為我們圈選目標的形狀,使用方式如下

使用現有模型標記YOLO格式label

但是若我們想要使用既有的模型訓練一些新的圖片,在新的圖片,若要標記一些常見的物品,如汽車、人、機車等…。這些東西因為在YOLO這種模型,預設的偵測狀況就很不錯了,有的時候為了要讓標記更快速,可以使用現有模型把預測的結果轉為標記檔案,再匯入Roboflow等標記軟體檢視標記狀況並修正錯誤的標記,會可以使標記工作更輕鬆。

預測結果轉標記程式碼

這邊是預測的result的相關文件: https://docs.ultralytics.com/reference/engine/results/#ultralytics.engine.results.Results.tojson

我真的覺得yolov8做的很用心的點,在於他的說明超級清楚,尤其是在程式碼本身上面,我們可以單單藉由下面程式碼印出詳細返回的物件結構,然後就可以了解該如何取得我們所需的物件資訊

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt')  # pretrained YOLOv8n model

# Run batched inference on a list of images
results = model(['im1.jpg', 'im2.jpg'])  # return a list of Results objects

# Process results list
for result in results:
    boxes = result.boxes  # Boxes object for bbox outputs
    masks = result.masks  # Masks object for segmentation masks outputs
    keypoints = result.keypoints  # Keypoints object for pose outputs
    probs = result.probs  # Probs object for classification outputs
    print(masks )

從API我們可以得知,若我們使用的是yolo-seg,則吐回的座標資訊可參考這個返回值

完整預測結果轉標記的程式範例

設定folder_path到images的資料夾,label會放到相對應的labels資料夾下

from ultralytics import YOLO
from PIL import Image
import cv2
import os

# 資料夾路徑
folder_path = './datasets/coco8-seg/images/train'
images = []
# 確保資料夾存在
if not os.path.exists(folder_path):
    print("資料夾不存在")
else:
    # 取得資料夾內所有檔案
    file_list = os.listdir(folder_path)
    
    # 遍歷每個檔案
    for filename in file_list:
        # 確保檔案是圖片檔案(可根據您的需求調整)
        if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
            # 構建完整的檔案路徑
            file_path = os.path.join(folder_path, filename)
            
            images.append(file_path)

# Load a model
model = YOLO('yolov8n-seg.pt')  # pretrained YOLOv8n model

# Run batched inference on a list of images
results = model(images)  # return a list of Results objects


# Show the results
for r in results:
    formatted_string = ""
    if r is not None and r.masks is not None:
        for i in range(len(r.masks.xyn)):
            mask = r.masks.xyn[i]
            cls = int(r.boxes.cls[i].item())
            formatted_rows = []
            formatted_rows.append(cls)
            for row in mask:
                formatted_rows.append(row[0])
                formatted_rows.append(row[1])

            formatted_string = ((formatted_string + '\n') if formatted_string != "" else "") + " ".join(str(x) for x in formatted_rows)
        with open(r.path.replace('.jpg', '.txt').replace('images', 'labels'), "a") as file:
            file.write(formatted_string)

把YOLO格式轉為COCO格式

請參考此專案: https://github.com/Taeyoung96/Yolo-to-COCO-format-converter/tree/master


17年資歷女工程師,專精於動畫、影像辨識以及即時串流程式開發。經常組織活動,邀請優秀的女性分享她們的技術專長,並在眾多場合分享自己的技術知識,也活躍於非營利組織,辦理活動來支持特殊兒及其家庭。期待用技術改變世界。

如果你認同我或想支持我的努力,歡迎請我喝一杯咖啡!讓我更有動力分享知識!